Logika

Z Nonsensopedii, polskiej encyklopedii humoru

Skocz do: nawigacji, szukaj

Co ma baba do moralności, jak dziad też ma skarpety.

Mikołaj Rej logicznie

Logika – sztuka dywagowania czy p to q (i czy \neg q to \neg p). Paradygmaty logiki są orężem filozofii i matematyki. Dzięki niej każdy filozof, po zapuszczeniu brody, może, obserwując pasącą się krowę i pilnując jej, żeby nie wlazła w kapustę, dowodzić rozmaitych twierdzeń. Dzięki logice może przygotować się do wykładów, w których może pociągnąć wątek na mnóstwo sposobów, poniżej przedstawiono wybrane:

  • Przez zaprzeczenie założenia – założyć się można do wozu, zatem jeżeli nie ma wozu, to założenie nie istnieje.
  • Przez odpowiednie twierdzenia – bierzemy pół jednego i pół drugiego, łączymy i mamy trzecie – zupełnie nowe
  • Przez opowiadanie dygresji nie na temat.
  • Przez demonizację – „Bez flaszki nie rozbieriosz”.
  • Przez sprowadzenie na manowce – „Dla pięciu wymiarów to widać, a dalej przez indukcję...”.
  • Przez presję moralną – „Jak wiadomo ze szkoły podstawowej...”.
  • Przez sztuciec – „A nuż wyjdzie?”.
  • Przez połechtanie ambicji słuchaczy – „To dla państwa jest proste”.
  • Przez rozparcelowanie na dostatecznie dużą liczbę przypadków (i zbagatelizowanie każdego z nich).
  • Przez zakrzyczenie (jakież to kobiece).
  • Przez zamachanie rękami.
  • Przez perwersję, czyli od tyłu.
  • Przez sprowadzenie do absurdu – „Jesteś debilem i z tobą nie rozmawiam.”
  • Przez trywializację – „No a to jest już logiczne i dowiedzenie tego jest zbyt trywialne by się nad tym tutaj rozwodzić.”
Info Główny artykuł: Metody dowodzenia twierdzeń

Największym osiągnięciem twórców logiki jest powołanie do życia tzw.logiki sowieckiej (logika sowiecka jest podstawowym narzędziem nauki radzieckiej. Logika sama w sobie jest absolutnie pewną metodą dochodzenia do niepewnych wniosków. We wszystkich odmianach logiki wyróżniamy dwa jej rodzaje: logikę kobiecą oraz logikę męską. Ta druga jest bardziej logiczna, ale ta pierwsza ma bardzo twarde argumenty. Jak zauważył już William Ockham „tam gdzie kończy się logika zaczyna się wojsko”.

[edytuj] Przykłady logiki

Jeśli;

p - koń jest ptakiem(0)
q - Ja jestem idiotą (1)

to łatwo można stworzyć odpowiednie zdanie logiczne, która nie zawsze jest prawem.

Spróbujmy zastanowić się nad danym wzorem p \implies q. Tak więc zdanie będzie wyglądać następująco: Jeśli koń jest ptakiem, to ja jestem idiotą. Wychodzi nam prawo logiczne (0 \implies 1 - 1). Nie zawsze tak jest. Jeśli jakiś perwers zrobi nam przykrość (\neg p \implies \neg q) wówczas zdanie będzie nielogiczne: Jeśli koń nie jest ptakiem, to ja nie jestem idiotą. Nikt i tak tego nie zrozumie.

Czasami logika osiąga rozmiary niesamowite. Aby utrudnić zadanie w tych przykładach dodamy dodatkowe zdanie;

r - władza kłamie (1)

Sprawdźmy czy to zdanie jest prawdziwe:  p \implies \neg q \land r \lor q \implies \neg ( q \lor p ) <=> p \land \neg r \lor q . Przerażające? Oczywiście, że tak! Odpowiednie zdanie będzie wyglądać następująco: Jeśli koń jest ptakiem, to ja nie jestem idiotą i jeśli władza kłamie lub ja jestem idiotą, to ja nie jestem idiotą lub koń nie jest ptakiem, wtedy i tylko wtedy, gdy koń jest ptakiem i władza nie kłamie lub ja jestem idiotą. Czy to zdanie jest prawdziwe? Oczywiście, że nie, a to za sprawą błędnego założenia, że władza nie kłamie.

Prawami logicznymi można się bawić przez układanie coraz to większych i głupszych zdań oraz sprawdzanie wartości logicznej. Niektórych to bawi (matematycy), niektórych (reszta ludzkości) nie bardzo. Łatwo można się w tym zapętlić, oto przykład, jak nie powinno się bawić zdaniami logicznymi.

Jeśli;

p - Wielki Brat patrzy
q - Pies bawi się kością
r - Giertych jest Lepperem
x - Kurski się kłóci

To przy ułożeniu odpowiednio trudnego zdania, wszystkim wyparują mózgi. Oto przykład tak trudny, że wręcz nie możliwy do zrobienia: p \lor q \implies r \lor \neg q \land x \land \neg (q \implies r) \iff p \lor x \lor \neg r \implies r \lor p \land \neg x.

Zdanie będzie wyglądać tak: Jeśli Wielki Brat patrzy lub pies bawi się kością, to Giertych jest Lepperem lub pies nie bawi się kością i Kurski się kłóci i ogólnie nieprawdą jest, że jeśli pies bawi się kością, to Giertych jest Lepperem, wtedy i tylko wtedy, gdy jeśli Wielki Brat patrzy lub Kurski się kłóci lub Giertych nie jest Lepperem, to Giertych jest Lepperem lub Wielki Brat patrzy i Kurski się nie kłóci.

Woda wrze w temperaturze 100 stopni, a kąt prosty ma 90 stopni – wniosek logiczny (miażdżący) – woda wrze w temperaturze większej niż kąt prosty. Jest to szczególny przypadek logiki rzadko opisywany w periodykach naukowych, wykracza nawet poza dziedzinę logiki formalnej. Trywialny dowód pozostawiamy czytelnikowi, to logiczne...

Nasze strony