Wzór matematyczny

Z Nonsensopedii, polskiej encyklopedii humoru

Skocz do: nawigacji, szukaj

Wzór matematyczny – rodzaj tworu matematycznego, składający się głównie z literek i cyferek.

Wzory wyglądają mniej więcej tak:

\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
D_n(R)}{\partial R}\right]\,dR

f(x) = \begin{cases}1 & -1 \le x < 0\\ \frac{1}{2} & x = 0 \\ x & 0 < x \le 1 \end{cases}

\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
D_n(R)}{\partial R}\right]\,dR

{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,

\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
D_n(R)}{\partial R}\right]\,dR

\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}

\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,

[edytuj] Cel

Jedyny słuszny powód, dla których istnieją wzory matematyczne to, poza różnymi zboczeniami matematyków, udowadnianie różnych dziwnych rzeczy. Na przykład wzór:

16x=12y

Po przekształceniach:

28x-12x=21y-9y

28x-21y=12x-9y

7(4x-3y)=3(4x-3y)

Jak łatwo zauważyć dowodzi, że:

7=3

Nasze strony
Przyjaciele